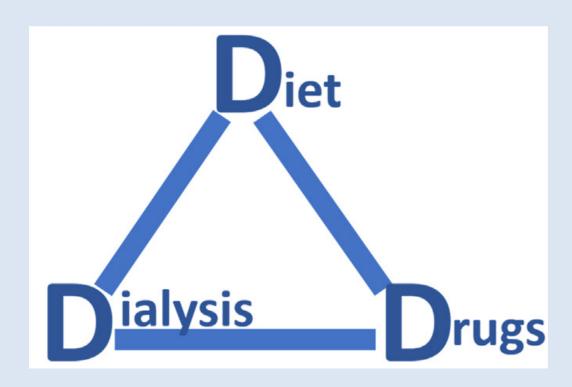

به نام خداوند جان و خرد

Presented by: Hamed Mohamadian Shoeili حامد محمدیان شوئیلی

Management of Hyperphosphatemia in ESRD Disease


A simplified overview of disordered mineral metabolism in CKD-MBD

Organic phosphates form the structural components of cells and are distributed

- Skeleton (85%)
- Soft tissue (14%)
- Teeth(0.4%)
- Blood (0.3%)
- Extravascular fluid (0.3%)

3Ds of hyperphosphatemia management

Hidden sources of phosphorus

❖ Food additives:

- 1. pH regulators
- 2. stabilizers
- 3. flavor/color enhancers

Dietary phosphorus in the form of food additives has roughly doubled from 1990 to 2005,

- Poor labeling of phosphorus content
- Phosphorus in medications.

Common medications high in phosphorus include:

- 1. Paroxetine (antidepressant)
- 2. Amlodipine (calcium channel blocker)
- 3. Lisinopril (antihypertensive)
- 4. Sitagliptin (antidiabetic)

- In the United States, the recommended daily allowance of phosphorus for adults is 900 mg/day
- The highest concentrations of naturally occurring phosphorus.
- a) cereal grains (120-360 mg/100 g)
- b) cheese (220-700 mg/100 g)
- c) egg yolk (586 mg/100 g)
- d) legumes (300–590 mg/100 g)
- e) fish and meat (170-290 mg/100 g)

Source:	Plant	Animal	Inorganic Additives
Common Foods:	Grains Legumes Nuts	Meat Cheese Fish	Soda Prepared Foods Canned Foods
Bioavailability:	30-50%	60-90%	90-100%

• 30% of patients receiving dialysis take at least 1 medication containing phosphorus

• This source of phosphorus is clinically significant for patients with advanced CKD, given that more than 25% of these patients are prescribed 25 tablets per day for a range of conditions

• Patients should be encouraged to consume foods with the least amount of inorganic phosphate, low phosphorus—to—protein ratios, and adequate protein content

• with a recommended daily protein intake of 1–1.2 g/kg/day for patients receiving dialysis, it is extremely difficult to keep phosphorus levels below 900 mg/day

• meats and poultry without breading, marinades, or sauces

• seafood is an excellent source of low fat protein, with lower phosphorus content than red meat

• use of dairy Substitutes

• use of egg white in cooking and baking, as the yolk contains the majority of the phosphorus in eggs

Dialytic Removal of Phosphorus

- Conventional dialysis treatment removes only a fraction of absorbed Phosphorus
- A dietary phosphorus consumption of 1,000 mg/day with a 70% GI absorption rate provides an approximate weekly phosphorus burden of 5,000 mg
- Standard hemodialysis (4 hours) removes, on average, 700–900 mg of phosphorus, amounting to a weekly phosphorus removal of 2,100–2,700 mg with a conventional thrice weekly hemodialysis regimen

Alternative strategies targeting phosphorus kinetics to increase dialytic phosphorus removal, including frequency, duration, and timing of dialysis, have been investigated

Table 1. A Comparison of Phosphorus Removal Between Dialysis Modalities

Modality	Frequency	Phosphorus Removal (mg/wk)	Reference
Conventional HD	3 × 4 h	1,572 ± 366	104
Extended HD	3 × 5 h	3.400 ± 647	105
Short daily HD	6 × 3 h	2,452 ± 720	56
Nocturnal daily HD	6 × 6-8 h	$8,000 \pm 2,800$	106
CAPD	24.0 h*	$2,790 \pm 1,022$	107
APD, CCPD	18.5 ± 7.3 h*	2,739 ± 1,042	107

APD, automated PD; CAPD, continuous ambulatory PD; CCPD, continuous cycling PD; HD, hemodialysis; PD, peritoneal dialysis.
*Dwell time.

Drug Therapy

• Phosphate Binders

• Vitamin D

• Calcimimetics

Phosphate Binders

- Aluminum hydroxide
- Calcium-based binders
- Iron-based agents
- 1. sucroferric oxyhydroxide
- 2. ferric citrate
- Resin-based ion exchange binders
- Lanthanum carbonate

Phosphate Binder	Pros	Cons
Calcium-based: calcium acetate calcium carbonate calcium citrate	 Increases calcium and can correct hypocalcemia Low cost Moderate pill burden 	 Hypercalcemia and/or positive calcium balance Cardiovascular calcification
Sevelamer-based: sevelamer carbonate sevelamer hydrochloride	 No systemic absorption Potentially less vascular calcification (calcium-free) Lowers LDL cholesterol Improvement in metabolic acidosis with carbonate variant 	 Adverse Gl effects High pill burden High cost Binds fat-soluble vitamins Metabolic acidosis with the hydrochloride variant
Iron-based: sucroferric oxyhydroxide	 Lower pill burden Minimal systemic absorption, no iron overload Greater efficacy Increased GI motility which might be beneficial in constipated and PD patients 	High cost
Iron-based: ferric citrate	 Noninferior to sevelamer, well tolerated, beneficial effect on renal anemia 	 Systemic absorption with potential for iron overload
Lanthanum carbonate	Twice as potent as calcium and sevelamer	 High cost Systemic absorption and potential tissue deposition/toxicity Gl intolerance, nausea Difficult to chew

Vitamin D

- Nutritional vitamin D: must undergo hydroxylation in the liver and kidney to become active.
- Non-nutritional vitamin D: can be synthesized in the skin from exposure to sunlight
- Active vitamin D and vitamin D analogs:
- 1. Calcitriol:
- 2. Paricalcitol
- 3. Doxercalciferol

Calcimimetics

• Calcimimetics activate the calcium-sensing receptor to inhibit calcium-regulated PTH secretion

• By reducing PTH, calcimimetics also decrease bone resorption and thus decrease the contribution of serum phosphorus from bone

 Potential limitations of calcimimetics include hypocalcemia and nausea/vomiting

KIDNEY

Loss of kidney function and impaired renal excretion of phosphorus

Source of

High

Phosphorus

Treatments and

Limitations

Dialyzer removes phosphorus from the blood

Dialysis removal not sufficient to reach target range

GUT

Dietary phosphorus absorption

Dietary changes:

Reduce intake of phosphorus and phosphate additives

Increased protein requirement necessitates dietary phosphorus

Phosphate binders:

Reduce phosphorus absorption

High pill burden and adverse GI effects

BONE

Bone resorption releases stored phosphorus

Vitamin D:

Increases calcium and suppresses PTH

Can increase phosphorus absorption from gut

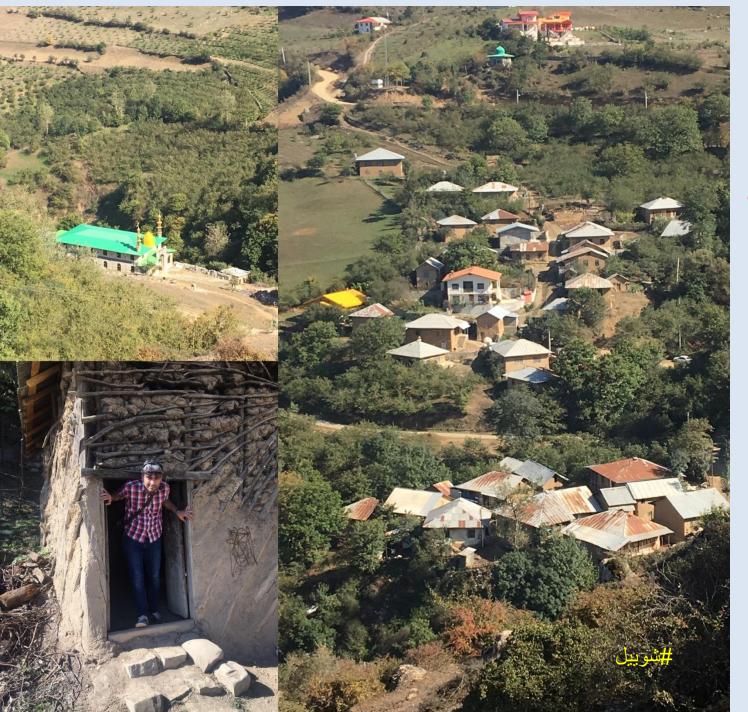
Calcimimetics:

Suppress PTH-induced bone turnover and phosphorus release

Possible hypocalcemia and GI symptoms

lanthanum carbonate (Fosrenol)

- ➤ Initial: 750–1500 mg/day PO in divided doses
- Titrate by 750 mg increments q2–3Weeks until acceptable serum phosphate level attained
- Doses up to 4500 mg were evaluated in clinical trials; most patients required a total daily dose between 1500-3000 mg to reduce plasma phosphate levels to <6.0 mg/dL
- Formol price: \$1,138 for a supply of 90


sucroferric oxyhydroxide (Velphoro)

- ➤Initial: 500 mg PO TID with each meal
- The highest daily dose studied in a Phase 3 clinical trial in patients with ESRD was 6 tablets (3,000 mg/day)
- ➤ Velphoro Prices: \$1,517 for a supply of 90 tablets

Tenapanor (IBSRELA)

ممنون از توجه شما

من اینجا ریشه در خاکم ...

گیلان/ اشکورات/ شوییل

